Светокопировальный аппарат - définition. Qu'est-ce que Светокопировальный аппарат
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Светокопировальный аппарат - définition

ТНПА; Телеуправляемый подводный аппарат; Подводный телеуправляемый аппарат
  • ледокола береговой охраны США «Хили»]] в [[море Бофорта]]
  • Телеуправляемый подводный робототехнический комплекс «Шельф» на выставке «[[Армия-2021]]».

Светокопировальный аппарат      

диазокопировальный аппарат, средство оргтехники (См. Оргтехника), применяется для оперативного копирования и размножения документов (преимущественно чертежей) на основе диазотипии (См. Диазотипия). Технологический процесс получения светокопий осуществляется в 2 этапа: экспонирование и проявление. В большинстве С. а. экспонирование производится контактным способом "на просвет": прозрачный или полупрозрачный оригинал (например, кальку) с односторонним изображением накладывают на светочувствительный слой диазоматериала (ДМ) и подвергают интенсивному ультрафиолетовому облучению, вследствие чего на ДМ получается скрытое изображение. Экспонированный ДМ проявляют "сухим", "мокрым" или "горячим" способом (в зависимости от типа ДМ). С. а. классифицируют по способу обработки ДМ - аппараты "сухого", "мокрого" и "горячего" проявления; по конструктивному исполнению - стационарные и настольные, с рулонной и листовой подачей ДМ, с отдельным проявочным устройством и совмещенные; по степени автоматизации - полуавтоматические и автоматические; по оснащённости вспомогательными устройствами - агрегатированные с бумагорезальным, листоподборочным и фальцевальным оборудованием и неагрегатированные. Как правило, экспонирование в С. а. осуществляется при перемещении оригиналов в контакте с ДМ вокруг прозрачного цилиндра, внутри которого помещены источники ультрафиолетового излучения, например ртутно-кварцевые лампы (рис. 1, а). Движение ДМ обеспечивается лентопротяжным устройством (транспортёром). Экспонированные ДМ поступают в проявочное устройство. Однокомпонентные ДМ проявляют "мокрым" способом с применением щелочных растворов (рис. 1, б). Такие С. а. чаще всего выполняют настольными, они не нуждаются в специальной вентиляции и могут быть установлены непосредственно в рабочем помещении конструкторов или в канцелярии; таковы, например, С. а. типа СКМ-22 (рис. 2), изготовляющий светокопии на рулонной диазобумаге шириной до 460 мм при скорости движения ленты 0,5-5,5 м/мин, и настольный конторский С. а. (рис. 3), позволяющий получать копии на листах размером 210x297 мм (формат А4). Двухкомпонентные ДМ проявляют "сухим" способом в парах аммиака (рис. 1, в). С. а. "сухого" проявления обычно выпускаются в стационарном исполнении, с рулонной подачей ДМ; скорость движения ДМ достигает 42 м/мин. Наиболее широко их применяют в проектно-конструкторских организациях; эти С. а. часто агрегатируют с резальным и листоподборочным устройствами (рис. 4). Термопроявляющиеся ДМ, содержащие не только диазо- и азокомпоненты, но и соединения, выделяющие при нагревании необходимые для проявления вещества со щелочными свойствами, обрабатывают в нагревательном устройстве ("горячее" проявление). По конструкции С. а. "горячего" проявления аналогичны аппаратам "сухого" проявления.

К 1975 разработаны качественные высокочувствительные ДМ, позволяющие использовать С. а. для копирования репродукционным способом, а также для получения дешёвых микрокопий. Благодаря повышению светочувствительности ДМ и их сенсибилизации не только к ультрафиолетовым, но и к зелёным лучам увеличилась скорость экспонирования (свыше 50 м/мин), а также стало осуществимо проекционное диазокопирование с микрофильмов (в т. н. диазодубликаторах).

Лит.: Бурцев В. В., Каплан Э. Б., Средства оргатехники. Справочник-каталог, М., 1971; Алферов А. В., Резник И. С., Шорин В. Г., Оргатехника, М., 1973.

А. В. Алферов.

Рис. 2. Малоформатный настольный рулонный светокопировальный аппарат СКМ-22 (СССР).

Рис. 3. Малогабаритный настольный конторский светокопировальный аппарат с листовой подачей бумаги (производительность до 8 копий в мин).

Рис. 4. Автоматический агрегатированный конторский светокопировальный аппарат с листовой подачей бумаги и листоподборочным устройством (производительность до 50 копий в мин).

Рис. 1. Схемы узлов светокопировальных аппаратов. а - экспонирующее устройство: 1 - рулон диазобумаги, 2 - подача оригинала, 3 - светоотражатель, 4 - приемный лоток для использованных оригиналов, 5 - экспонированный диазоматериал, 6 - стеклянный цилиндр, 7 - ртутно-кварцевые лампы, 8 - лента транспортера; б - устройство для "мокрого" проявления: 1 - ванна с щелочным раствором, 2 - направляющие, 3 - экспонированный диазоматериал, 4 - отжимающие валики, 5 - сушильное устройство; в - устройство для "сухого" проявления: 1 - проявленный диазоматериал, 2 - труба подачи аммиака, 3 - решётка, 4 - жёлоб, 5 - корпус, 6 - нагревательные элементы.

Веберов аппарат         
ОРГАН НЕКОТОРЫХ КОСТНЫХ РЫБ, СОЕДИНЯЮЩИЙ ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ С ВНУТРЕННИМ УХОМ
Аппарат Вебера

у рыб аппарат, воспринимающий, трансформирующий в механические смещения и передающий (посредством подвижного элемента первого позвонка и спинномозговой жидкости) внутреннему уху (См. Внутреннее ухо) вибрации стенок плавательного пузыря (резонатора звука). Состоит из 4 пар подвижно сочленённых между собой косточек, связывающих плавательный пузырь с внутренним ухом. Косточки В. а. - преобразованные части первых позвонков и третьего ребра. В. а. назван по имени впервые описавшего его в 1820 немецкого анатома Э. Вебера. Степень развития слуха у рыб связана с наличием или отсутствием В. а. Рыбы, имеющие В. а. (Cyprinidae, Siluridae, Characinidae, Gymnotidae), способны воспринимать звуки с частотой до 13 кгц, рыбы без В. а. воспринимают звуки с частотой до 2,5 кгц.

Лит.: Протасов В. Р., Биоакустика рыб, М., 1965.

В. Р. Протасов

Схема строения веберова аппарата: 1 - рычаг; 2 - промежуточная кость; 3 - покрышка; 4 - плавательный пузырь.

ВЕБЕРОВ АППАРАТ         
ОРГАН НЕКОТОРЫХ КОСТНЫХ РЫБ, СОЕДИНЯЮЩИЙ ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ С ВНУТРЕННИМ УХОМ
Аппарат Вебера
система подвижно сочлененных косточек, соединяющих плавательный пузырь с внутренним ухом у некоторых костистых рыб. Участвует в восприятии звука, передает изменения объема плавательного пузыря (при вертикальных перемещениях рыбы) внутреннему уху. Назван по имени Э. Г. Вебера.

Wikipédia

Телеуправляемый необитаемый подводный аппарат

Телеуправляемый необитаемый подводный аппарат (ТНПА) (англ. Remotely operated underwater vehicle (ROV)) — это подводный аппарат, часто называемый роботом, который управляется оператором или группой операторов (пилот, навигатор и др.) с борта судна. Аппарат связан с судном сложным грузонесущим кабелем, через который на аппарат поступают сигналы дистанционного управления и электропитание, а обратно передаются показания датчиков и видеосигналы. Пилот находится на борту судна, поэтому аппарат необитаемый.